
The eXtensible Data Model and Format for Interdisciplinary
Computing
Mr. Jerry A. Clarke

U.S. Army Research Laboratory
Aberdeen Proving Ground , Maryland 21005-5067

clarke@arl.army.mil

Dr. Raju Namburu
U.S. Army Research Laboratory

Aberdeen Proving Ground , Maryland 21005-5067
raju@arl.army.mil

Abstract

The Interdisciplinary Computing Environment (ICE), a CHSSI portfolio project, has defined a common, active data
model and format to help combine various High Performance Computing (HPC) codes and tools into a single user
system. Known as the eXtensible Data model and Format (XDMF), it provides computational engines with the tools
necessary to exist in a modern computing environment with minimal modification. Instead of imposing a new
programming paradigm on HPC codes, XDMF uses the existing concept of file I/O for distributed coordination.
XDMF incorporates Network Distributed Global Memory (NDGM), Hierarchical Data Format version 5 (HDF5),
and eXtensible Markup Language (XML) to provide a flexible yet efficient data exchange mechanism.

Naturally, the flexibility and functionality of the system sacrifices some performance when compared to a “hard-
wired” solution. A balance between functionality and performance must be reached that allows for reusable tools
that perform their function with acceptable efficiency. In addition, to be truly useful, existing HPC programs must
be able to take advantage of the system without overly burdensome modification. To gauge the actual costs in
runtime of this flexible system, two different codes were outfitted for use. First Paradyn, an MPI based finite
element code, was tested in a distributed memory environment. Next CTH, an MPI based finite volume code was
run in a shared memory environment. Due to the different nature of the data layout in these codes, they are good
representatives of the ends of our performance spectrum.

09/26/01

2

 Introduction

Modern High Performance Computing (HPC) facilities are commonly a collection of heterogeneous systems, each
selected for its particular strength. Logically, software systems can benefit from combining the strengths of various
hardware systems, under a single operating environment, to provide feature rich end-user environments. In addition,
software systems can also benefit from combining components from different disciplines in a single system. For
example, providing interactive runtime scientific visualization to a running HPC code allows the user to verify setup
and monitor progress during execution. Computation can proceed on the large scalable system, while the user
visually analyses the data on a high-end graphics workstation.

Developing an environment where distributed and parallel software components, written in various programming
languages, can be easily assembled into a complex system is a difficult task. In a high performance computing
environment, the task is even more difficult since the volume of data being processed is enormous. It is beneficial to
minimize data movement in order to improve overall system performance.

Existing low level facilities like sockets, Remote Procedure Call (RPC), Message Passing Interface (MPI), and
Parallel Virtual Machine (PVM), alone are insufficient to build complex, reusable distributed computing
components and applications. In addition to the extensive bookkeeping necessary to coordinate messages, they lack
the standard facilities to describe the meaning of the data in addition to its’ values. For example, it is impossible to
know whether an array of floating point values describes the X,Y,Z values of a computational grid or computed
vector values without some type of additional information. Additional layers, provided by higher level facilities and
environments, address this issue.

Many higher level efforts attempt to provide a generalized solution for distributed applications. Some of the most
notable efforts involve Meta-computing, Distributed Object Brokers, and Software Buses. Serious Meta-Computing
efforts attempt to address the complete distributed computing issue in its entirety. Facilities for user authentication,
job submission, resource allocation, and task coordination are provided in an effort to provide seamless access to a
potentially enormous computational grid. These systems typically provide some facility for individual components
to communicate in addition to standard low level methods. Meta-computing environments like Globus [1] and
Legion [2] may potentially provide the necessary framework, but properly deploying these systems requires
significant site-wide coordination of queuing systems, system software, accounting, and security policies. These
systems are effectively distributed operating systems and will require more time to attain the stability and
acceptance necessary for site-wide deployment in production HPC environments. In addition, they provide no
inherent facility for describing data meaning since they must support every type of HPC code.

Environments implemented entirely of user level code require no privileged access and simplify both accounting and
security issues. While limited in functionality by definition, these environments provide sufficient capability for the
implementation of robust end-user systems constructed from verified and efficient components in various
disciplines. If each of these components were to be developed from scratch, one might take advantage of object
oriented, distributed systems based on the Common Object Request Broker Architecture (CORBA) [3]. However,
imposing this type of object oriented architecture on an existing HPC code designed for scalable performance
requires significant effort and could adversely affect the code’s performance.

Other approaches like the Polylith [4] software bus provide a standard method for components to provide services
to clients upon request. As its name implies, the software bus approach is a flexible mechanism to interconnect
diverse software components in a procedural, rather than an object-orientated architecture. As opposed to a targeted
solution, this approach is a generalized one focusing on the communication and data transformation of independent
interconnected modules. Polylith, as well as other systems like Darwin [5] define a “Module Interconnection
Language” to describe the structure of the distributed system. The Olan Configuration Language [6] found existing
object request brokers and software bus “module interconnection languages” insufficient and extended the
approaches to convey the dynamic aspects of applications.

While these systems have met with varying degrees of success, none can be considered a “standard” for constructing
distributed applications from existing components. These systems attempt to define a “top-down” structure for

09/26/01

3

defining and implementing the operation of the entire software system. In fact, this “top-down” approach is common
to meta-computing and CORBA systems. Perhaps a more expedient approach for sharing data is a “bottom-up” one
of defining a common data facility to which HPC codes could efficiently read and write values in a standardized
method similar to a restart or dump file. Such a “bottom-up” solution to this issue would be immediately useful for
transferring data between applications like HPC simulation codes and visualization post-processors. Eventually, if
simultaneously available to running applications, such a solution would lend itself to co-processing and
computational steering systems. Even this proves to be a non-trivial undertaking. Defining a method for accessing
enormous amounts of data and describing its content is difficult when one considers the diverse data organization
requirements and performance issues of modern parallel codes. Several efforts attempt to define common data
models, formats, and sharing mechanisms for HPC applications.

While it is unlikely that a single data model and format could serve all HPC applications adequately, clusters of
similar applications can agree on data exchange mechanisms. For example, the HDF-EOS [7] effort has made
significant progress toward providing a common layer of data access for earth science data collection. The
Department of Energy ASCI program has significant effort to provide a common data model and format, based on
HDF5, for DOE simulation codes and tools. Other significant efforts like the KeLP (Kernel Lattice Parallel) [8]
system from the University of California, San Diego, and the Active Data Repository [9] from the University of
Maryland , have succeeded in providing flexible data access for running applications.

To realize the benefits of these systems, HPC codes and tools must use custom APIs to access data. For example, an
application would not use the HDF5 API to access HDF-EOS data, rather it would utilize the HDF-EOS API. This
forces the application to be aware of, or adopt, the underlying data model. Full support for more than one of these
systems in an HPC simulation is rare at best. Legacy codes or codes with limited development manpower, may find
it difficult to implement new data access concepts not designed into the original code. In addition, current systems
with a clearly defined data model tend to store that information (metedata attibutes) via the same mechanism used
to implement the data format. This is not always optimal and makes it difficult to extend the data model or embed
additional information outside of the formal model.

Simply stated, the problem is that current systems either don’t provide a sufficient data model or make it difficult to
separate from the data format. A parallel HPC code, for example, should not be constrained by the data model
required by a generalized visualization system; the code should be able to efficiently update values and continue
computation. This is the focus of the XDMF solution. By separating the data model from format, the necessary
order can be associated with the raw values to give them meaning while not constraining the HPC code. The code
only needs to be concerned with producing the proper format, leaving the complexity of the data model to other
tools. In addition, the data model is extensible, so particular features not part of the original design can be added as
needed.

Origins in Runtime Visualization

At the U.S. Army Laboratory, we have developed a system called the “Distributed Interactive Computing
Environment” (DICE) and are using it in a production environment with structural mechanics, fluid dynamics, and
computational chemistry HPC codes. DICE provides flexible yet efficient mega-components for graphical user
interface, data organization, data exchange, and scientific visualization. Originally designed to provide distributed
runtime visualization capability to several computational fluid dynamics codes, DICE has become a flexible way to
provide distributed capabilities to a variety of HPC codes in different computational technology areas.

XDMF is the successor to the DICE data model. XDMF categorizes data in two logically separate flavors: Heavy
Data and Light Data. Heavy data are potentially enormous data structures that describe data values. Light data
conveys data meaning and generally contains information describing the heavy data. Light data tends to be small
and portable, while access to the heavy data should be minimized for performance reasons. XDMF keeps these two
types of data logically, and (when advantageous) physically, separate. As we will see, this provides an enormous
amount of functionality and flexibility to distributed software components.

09/26/01

4

Instead of imposing a new paradigm on HPC codes, XDMF uses the existing concept of file I/O for coordination.
Since virtually every major HPC code has input and output sections, it is straightforward to add additional calls that
mimic standard file I/O to transfer calculated values and control information to the XDMF system. However, instead
of resulting in secondary storage I/O, these calls result in distributed interprocess communication.

Network Distributed Global Memory (NDGM), is a facility like Distributed Shared Memory (DSM) that provides
efficient access to a virtual, contiguous buffer via a client/server architecture. NDGM servers manage a portion of a
buffer that physically resides in system shared memory, a disk file, or in its local address space. Clients access this
buffer via puts(), gets(), and vector operations by specifying a virtual start address of the desired data. Locating
sections of requested buffers and the actual transfer is handled by the NDGM client system. In addition, NDGM
provides semaphores and barriers to coordinate the activity of parallel/distributed applications.

While NDGM is not a true DSM system it provides several advantages when designing an efficient data exchange
mechanism. NDGM does not automatically map and unmap pages of memory from an application. Rather, the
application itself is responsible for transferring data to NDGM via a read/write interface.

While this might appear to be a major inconvenience, it greatly reduces the amount of communication. In addition,
NDGM takes full advantage of operating system shared memory facilities when a server and client reside on the
same machine. This allows remote clients to maintain full access to the data buffer while local clients incur minimal
overhead. Support for the “Generic Security Services API” (GSS-API) [10] provides the necessary security
features that are typically required in an HPC environment. NDGM by itself was used to create an efficient parallel
version of an existing CFD code without significant restructuring of the original code [11].

The original DICE data model was targeted at CFD codes that used large, multi-block structured grids, so it was
possible to implement simple, existing file formats directly in the NDGM buffer with minimal effort. However, the
addition of codes from other disciplines made the need for a more comprehensive data organization obvious. The
Hierarchical Data Format Version 4 (HDF) from NCSA was chosen to implement a self-describing organization
over NDGM that provided sufficient facilities for accessing sub-sections of data. The low level HDF I/O routines
were modified to provide transparent access to NDGM via the HDF API. HDF datasets could now exist on disk, in
NDGM, or both. This proved convenient since codes could use the NDGM facility for interprocess communication
and/or write to secondary storage during batch execution by simply modifying the target HDF filename.

Upon attempting to integrate the system with more production codes, limitations of the current system became
apparent:

• HDF4 used a fixed 32-bit offset mechanism resulting in a 2GB limit.
• There was little in the way of data description above the rank and dimension of arrays. For example,

other than name, there was no way of telling XYZ position data from calculated scalars.
• Other than NDGM access on pre-initialized HDF “files”, there was no parallel I/O facility.
• Even tools that required information about possibly invariant quantities, like rank and dimension,

needed to access the potentially remote binary data in HDF. This required development in system
programming languages like C and C++ when scripting languages like Tcl and Python were more
appropriate.

Several of these limitations could be easily resolved by migrating to the new HDF5 format being developed
primarily for NASA’s Earth Observing System HDF-EOS project, and the DOE ASCI Scientific Data Management
(SDM) comprehensive data model and format effort. However, by revisiting some of the basic concepts of the
system, we have significantly improved flexibility while maintaining efficiency.

XDMF: The Next Step

We recently implemented a data model and format, which can best be described as a distributed data hub,
called the eXtensible Data Model and Format (XDMF). It is currently being integrated into several major
HPC codes. The first major feature of XDMF is that the Light Data (data about the data and small amounts

09/26/01

5

of values) is logically, and potentially, physically separate from the Heavy Data (large arrays). The second
major feature is the support of Network Distributed Global Memory as a virtual file driver under NCSA’s
Hierarchical Data Format Version 5 (HDF5).

XDMF provides a targeted data model and format as well as a facility for sharing the data in a distributed
environment during runtime. Through the use of NDGM, codes and tools can synchronize their activities at a coarse
grain level to provide a complex end-user application consisting of individually simple components. Access to
XDMF is provided via system programming languages like C, C++, and FORTRAN, scripting languages like
Tcl/Tk, Python, and Java.

The primary advantage of XDMF is interoperability. Tools can be quickly designed that perform a particular task
very well. If they use XDMF, these tools can then be reassembled in a variety of configurations to accomplish
different goals. New HPC codes or visualization tools need only provide XDMF access to use any of the other
tools. XDMF is both a data model and format; information about data values and “how they are to be used”, are both
made available.

It is important to note that XDMF is intended to augment, not replace traditional parallel computing facilities like
MPI, PVM, and OpenMP. In practice, existing components that use MPI are outfitted with a small amount of
additional code to update XDMF. The code’s efficiency is maintained via traditional, well accepted means, while the
overall distributed application is serviced by XDMF.

Using XDMF and other components, a total end user application system can be assembled. This system provides
access to pre-processing, code setup, runtime support and post processing.

As shown in Figure 1, HDF5 is used to provide the NDGM buffer with structure. HDF has been enhanced to support
data in NDGM via the “virtual file driver” interface. No HDF code needs to be modified to support this
functionality; the NDGM “driver” can simply be used with the current version of HDF5. With the addition of this
driver, HDF datasets can reside on disk, in NDGM, or in both. This is particularly useful when data has both a static
and dynamic component. For example, a static grid may reside on disk while the updating solution resides in
NDGM. HDF provides a consistent interface for structured and unstructured data as well as a grouping structure. It
allows the storage of character, integer, and floating point values in a portable fashion by providing conversion to
various host dependent formats. In addition, since the layout of the data is tightly related to access efficiency, HDF5
provides multi-dimensional data access facilities as part of the interface.

09/26/01

6

Full User Application

Scripting and Graphical User Interface Tools

Parallel/Distributed
HPC Codes

Visualization
Generators and
Other Analysis

Tools

XDMF API

Hierarchical Data Format (HDF5)

Network Distributed Global Memory (NDGM)

with GSSAPI

Operating System

Distributed Resources

Figure 1. Access to XDMF.

XDMF supports a variety of character, integer and floating point data types. These individual data types are then
organized into XDMF Arrays . Arrays are self-allocating, multi-dimensional, data structures that have methods to set
and get the number of elements, safely access individual element values, and to directly manipulate the underlying
data pointer for maximum efficiency. Several arithmetic operators have been overloaded and an additional
“expression” facility has been supplied to allow operations on entire arrays. A sub-region of the array may be
described by Hyperslab or Index. A Hyperslab specifies a Start, Stride, and Count in each dimension while an Index
describes parametric indexes into a dataset. Commonly, Hyperslabs are used to subsection structured datasets while
Indexes are used to subsection unstructured datasets.

XDMF arrays are stored externally in HDF5 “files”. HDF provides a “Virtual File Driver” layer to allow HDF5
“files” to physically reside in things other than standard disk files. XDMF provides an NDGM driver in addition to
the available Global Access to Secondary Storage (GASS : Globus System) and CORE (In-Memory) drivers
provided with HDF5. HDF5 also provides a compression facility so that data can be compressed and decompressed
as it migrates to/from physical storage. XDMF arrays inside an HDF5 file must be fully qualified for access. This is
done by providing the Domain, File, and Pathname of the dataset. This is passed as a colon separated string (i.e.
NDGM:Myfile.h5:/Geometry/XYZdata). Accepted domains are : FILE, CORE, GASS, and NDGM.

To effectively describe the data in a flexible manner, some type of data model is needed. Since it is anticipated that
any model will need to be augmented by the application in order to include all of the necessary information;
flexibility and extensibility are key elements to the data model. The intent of the data model component is to provide
a way to easily describe data content as opposed to data value.

In concept, this is quite similar to a Web page where the content of the information is separate from the display of
the information (i.e. color is independent of a word’s meaning). To assist in the free exchange of data on the
internet, the “World Wide Web Consortium” (W3C) [12], an organization whose members include AOL, IBM,
Microsoft, Oracle, Sun, and other major corporations, proposed a standard known as “eXtensible Markup
Language” (XML). XML is pervasive on the Web and is supported by a vast amount of tools, both free and
commercial.

09/26/01

7

While HDF provides an attribute facility capable of storing light data such as units and dimension names, we feel a
better choice is to take advantage of the recent emergence of XML. Although primarily targeted at web based
applications, XML provides a standard way to store and structure application specific data. There is already an
impressive availability of tools for parsing XML and converting it to internal data structures. The base data model
including information like grid topology, scalar names, and physical data location, is stored using XML. By utilizing
the functionality of XML, and logically separating the light data from the HPC heavy data, a myriad of tools can be
built with high level scripting languages and web tools that allow intelligent queries of enormous datasets without
causing massive amounts of I/O activity. In addition, this makes it easy for separate components to view the same
data values differently. For example, one component’s structured grid may be viewed by another component as a
collection of hexahedra. We believe that the ability to physically separate the light data from the heavy data provides
an enormous benefit.

The data model in XDMF is stored in XML. This provides the knowledge of what is represented by the Heavy data.
In this model, HPC data is viewed as a hierarchy of Domains. A Domain may contain one or more sub-domains but
must contain at least one Grid. A Grid is the basic representation of both the geometric and computed/measured
values. A Grid is considered to be a group of elements with homogeneous Topology and their associated values. If
there is more than one type of topology, they are represented in separate Grids. In addition to the topology of the
Grid, Geometry, specifying the X, Y, and Z positions of the Grid is required. Finally, a Grid may have one or more
Attributes. Attributes are used to store any other value associated with the grid and may be referenced to the Grid or
to individual cells that comprise the Grid.

The XML may be passed as an argument, stored in an external file or communicated via a socket mechanism. For
customization purposes, tools can also augment the standard content with XML “processing instructions”. This is
useful for attaching peer level information to the standard XML content without modifying the base specification.

The concept of separating the light data from the heavy data, as shown in Figure 2, is critical to the performance of
this data model and format. HPC codes can read and write data in large, contiguous chunks that are natural to their
internal data storage, to achieve optimal I/O performance. If codes were required to significantly re-arrange data
prior to I/O operations, data locality, and thus performance, could be adversely affected, particularly on codes that
attempt to make maximum use of memory cache. The complexity of the dataset is described in the light data portion
which is small and transportable. For example, the light data might specify a topology of one million tetrahedra
while the heavy data would contain the geometric XYZ values of the mesh and pressure values at the cell centers
stored in large, contiguous arrays. This key feature will allow reusable tools to be built that do not put onerous
requirements on HPC codes.

09/26/01

8

HDF5

File

Domain

Topology
100 Hexahedra

Grid

Geometry
XYZPoints.h5

Attribute

NDGM:Pressure.h5

XML

HPC
Code

Domain Grid

HDF5

 Complexity of Model Defined in Light Data

 HPC Code I/O is Natural and Efficient

NDGM GASS

Attribute

NDGM:Temperature.h5

Figure 2. Separating Light and heavy data

XDMF : Programming Language Access

In addition to accessing data values via the HDF interface, XDMF contains an object-oriented C++ convenience
interface to the XML light data and HDF5 heavy data. This convenience interface layer provides access to a subset
of the HDF calls using reasonable default values for many of the parameters. It is also able to encapsulate and
synchronize data, in memory and external (HDF) representations, to assist in the development of a more interactive
set of data analysis tools. Components that benefit from an object oriented architecture can access data via this layer
but its use is not required.

The computationally intensive components of a large system are generally developed using system-programming
languages like C, C++, or FORTRAN. Once these computationally intensive components have been developed
however, they may be “glued” together in a number of ways to provide the overall functionality required. Using a
system-programming language for this task is tedious, time-consuming, and inflexible.

Scripting languages are specifically designed for this purpose. They tend to be “weakly-typed” so that the output of
one component can easily be used as the input to another with little concern for the “type” of the data. While one
pays in runtime efficiency for this flexibility, scripting languages are intended to call large chunks of functionality
and not be used for fine grain control. By using “The Simplified Wrapper and Interface Generator” (SWIG) the
XDMF functionality is made available to languages like Tcl, Python, and Java. We have used this interface to
develop a simple visualization system based on the “Visualization Toolkit” (vtk). In addition, we have developed a
data reader for the commercial visualization package EnSight. The combination of support for vtk and EnSight
services the vast majority of user visualization needs.

XDMF: Component Coordination

Providing a common distributed data model and format alone is insufficient for building distributed applications.
Individual components must be able to easily coordinate their activity in order to avoid polling and race conditions.
Without this facility we have little more than a network file system.

09/26/01

9

NDGM provides barriers and semaphores for this purpose. Semaphores are locks, obtained by a client, explicitly
released by the client or automatically released when the client exits. Barriers are used to coordinate the actions of a
group of clients. A barrier is first initialized to a given value. Then as clients “check into” the barrier, the value is
decremented. The client’s activity is suspended until the value reaches zero. NDGM also provides a “barrier audit”
facility where a client can “check into” a barrier without effecting it’s value. This is useful for transient components,
like visualization tools, to update their information in a read-only manner.

These coordination facilities are made available to the upper layers of XDMF. When a parallel HPC code begins to
update values, each computational node can optionally wait in a barrier while all other nodes complete their updates.
Also the update can be suspended until a semaphore has been released by a controlling component (typically a
runtime visualization monitor).

Functionality vs. Performance

Naturally, the flexibility and functionality of the system sacrifices some performance when compared to a “hard-
wired” solution. A balance between functionality and performance must be reached that allows for reusable tools
that perform their function with acceptable efficiency. In addition, to be truly useful, existing HPC programs must
be able to take advantage of the system without overly burdensome modification. To gauge the actual runtime costs
in runtime of this flexible system, two different codes were outfitted for use. First Paradyn, an MPI based finite
element code, was tested in a distributed memory environment. Next CTH, an MPI based finite volume code was
run in a shared memory environment. Due to the different nature of the data layout in these codes, they are good
representatives of the ends of our performance spectrum.

ParaDyn, from Lawrence Livermore National Laboratory, is a parallel version of the widely used, finite element
based structural dynamics program Dyna3D . ParaDyn, like many currently used HPC codes, is written primarily in
FORTRAN and uses MPI to achieve parallelism. We felt that adding runtime visualization capability to ParaDyn,
would demonstrate the steps required to integrate existing components and also result in a useful distributed
application at ARL.

ParaDyn, like many HPC simulation codes, follows this basic execution:

• Read in computational grid and input parameters from the file system
• Initialize internal variables
• Iterate over the core physics routines of the code until final solution is reached, periodically writing

intermediate solutions to the file system
• Write final solution, cleanup, and exit

The additional XDMF calls map well into this execution flow. Since the code is mainly FORTRAN and XDMF
access is accomplished via C++, FORTAN wrapper functions are needed to encapsulate the required functionality.
For example, we write a new FORTRAN subroutine PARAINIT(), called when ParaDyn initializes its internal
variables, to initialize the necessary XDMF C++ objects and store their addresses in static variables. When the nodes
need to update XDMF, they have access to the appropriate C++ objects.

The internal structure of ParaDyn is complex enough to place it beyond the scope of our discussion. Suffice it to say
that internal variables are accessed through an internal database API. For simplicity, let us assume that there exists
such FORTRAN subroutines as PDGETXYZ(), PDGETNODEVAR(), and PDGETCELLVAR() to return XYZ
location and scalar values. We add a subroutine call to the main ParaDyn loop to call a new PARACHECK()
subroutine every iteration. This is the where the majority of the XDMF functionality is accessed.

PARACHECK() checks for new requests and for previous requests that are due. For example, a previous request
might have arranged for data to be updated every 5E-04 seconds of computational time or every 10 iterations. All
requests are made via XML and processed via the internal XML parser supplied with the convenience layer. Data
values are retrieved via the appropriate ParaDyn database API routines, and written via an HDF5 object also

09/26/01

10

supplied in the convenience layer. The HDF5 object handles any remote access via NDGM internally and
automatically handles errors like the specified NDGM server becoming inaccessible, which is a common
occurrence. For example, it is sometimes desirable for the user to temporarily start an NDGM server, request an
update, then remove the NDGM server when convinced the code is behaving correctly. Since a single run may take
many wall clock hours, these checks may be initiated from different locations; NDGM may need to move. Pseudo
code for PARACHECK() follows :

PARACHECK (integer Iteration, real SimulationTime)
Check for new requests
If Update is Required {

Parse XML Request
For each node in the request {

Switch on Request {
Case XYZ : data = PDGETXYZ()
Case Node : data = PDGETNODEVAR()
Case Cell : data = PDGETCELLVAR()
Default : Log Request Error
}

Map local subdomain of this variable to global space
Write data to HDF5 in global space

}
If this is a scalar run or this is MPI node 0 {

Signal completion of update via NDGM barrier
}

}

The XML to describe the data being written by ParaDyn gives the raw data meaning. For example, Paradyn writes
arrays of nodal position and connectivity, the following section of XML describes how those arrays define a
hexahedral mesh.

<Grid Name="Solid Elements">
<Topology

Type="Hexahedra"
NumberOfElements="110520">
<DataStructure

Dimensions=”110520 8”
DataType=”Int”
Format=”HDF”>

NDGM:Blocks.h5:/Connections/Solid
</DataStructure>

</Topology>
<Geometry Type=”XYZ”>

<DataStructure
Dimensions=”179685 3”
DataType=”Float”
Precision=”8”
Format=”HDF”>

NDGM:Blocks.h5:/node/Values/Position
</DataStructure>

</Geometry>
</Grid>

09/26/01

11

As a benchmark, a ParaDyn simulation was run of a concrete block wall being loaded by a blast. The visualization
below shows the initial loading of the wall represented by the colors on a mesh at the original concrete block
locations. At that point in the simulation, the initial loading, gravity, and contact with other blocks effect the block’s
displacement. The lowest row of concrete block is fixed to the ground and not allowed to move. The simulation is
small enough (about 110,000 hexahedral elements) to complete in a reasonable amount of time for benchmarking
purposes. In fact, the relatively small amount of data being sent to the NDGM buffer and the noncontiguous nature
of the unstructured mesh magnifies communication latency effects. In addition, in order to get a “worst case” idea of
the overhead involved, we ran the problem on the IBM NH-2 (375 MHz Power3, the jobs were submitted in a
manner to distribute the work across different SMP nodes), with the NDGM buffer on one node. In this scenario, all
of the MPI nodes must funnel their runtime data to one designated “collection” node that holds the HDF5 data.

Figure 3. ParaDyn Simulation

The NDGM implementation uses TCP/IP sockets as a communication mechanism. To get an idea of what to expect,
we ran the UNIX ttcp (Test TCP) program, with various buffer sizes, between nodes on the IBM. With minor
variations we regularly measured an average performance of about 68 MB/sec between 2 nodes for buffers over
25KB. Smaller buffers significantly reduced performance. Buffers of 2KB only see 9MB/sec while buffers of 200
bytes can see less than 1MB/sec. A test of the low level NDGM calls revealed an average of about 61 MB/sec over
transfer sizes above 25KB between 2 nodes. This test writes contiguous sections of the NDGM buffer without
calling any HDF5 routines. This rate seems to stay constant with small numbers of nodes; i.e. with two client
NDGM nodes accessing a third server node, each client sees about 30MB/sec.

A similar test to write then read back the buffer did not perform nearly as well. Each read requires the client to issue
a request to the server, then collect responses. This test consistently yielded transfer rates between 18-20 MB/sec at
best between two nodes. Smaller buffers yielded lower rates.

The problem time of 3E-02 seconds resulted in 2107 iterations in ParaDyn and an average timestep of 1.4E-05
seconds. Via the input file we specified an update frequency of 5E-04 seconds which resulted in an update every 35
iterations. Each update modified about 23MB of HDF5 data. Including the update at iteration 0, ParaDyn transferred
about 1.4 GB of data to HDF5 over the entire runtime of the problem. This varies slightly for different numbers of
nodes.

All of these timings were run on non-dedicated machines and networks. It is important to note that we are in no way
attempting to study the performance or scalability of ParaDyn itself, or the platforms on which it ran. We wish only
to demonstrate how to estimate the performance costs one can expect when implementing this new functionality. For
each set of timings “effective throughput” is calculated. This is simply the total data written (1.4 GB) divided by
the additional runtime required for the updates.

09/26/01

12

Table 1. Total Runtime on IBM-NH2

Number of Nodes Total Time
 No Updates

Total Time
with Updates

Effective
Throughput

2 921 sec 1074 sec 9.15 MB/sec
4 462 sec 576 sec 12.28 MB/sec
6 308 sec 414 sec 13.21 MB/sec

8 239 sec 373 sec 10.45 MB/sec

While the performance was acceptable for runtime visualization purposes, we were a bit disappointed with the
effective throughput. Adding some counters to the NDGM server revealed that it serviced 55,627 requests from an 8
node ParaDyn run. And while most of those requests were data writes, only about 20% of the writes were over
10KB. This is primarily due to the noncontiguous nature of unstructured data but the overhead of implementing a
file structure via HDF5 adds additional requests for file control information.

To give an idea of how we perform in a heterogeneous distributed environment, we ran the same problem on an SGI
Origin2000 (300 MHz R12000 Processors) with the NDGM buffer on a Sun E10000 (400MHz Ultrasparc II) over
the Gigabit Ethernet interface. Running ttcp with 100KB buffers shows ~26MB/sec for this route. The low-level
NDGM test showed ~23MB/sec effective throughput.

Table 2. Total Runtime between SGI Origin200 and Sun E10000

Number of Nodes Total Time
No Updates

Total Time
with Updates

Effective
Throughput

2 1653 sec 1761 sec 12.96 MB/sec
4 766 sec 871 sec 13.33 MB/sec
6 492 sec 593 sec 13.86 MB/sec

8 399 sec 495 sec 14.58 MB/sec

Using the Gigabit Ethernet connection, our effective throughput is about 13MB/sec. Tests over other interfaces yield
similar numbers. This seems to indicate that local data access and communications latency are the main performance
factors as opposed to data bandwidth. We will continue to investigate the lower levels of the system in order to
better understand all of the pertinent issues in order to increase the effective throughput.

The same overall strategy has been used to outfit another code, CTH, for use with XDMF (Figure 4.). CTH is a
heavily used, parallel, finite volume structural mechanics HPC code. It too has an internal database API to access
variables. CTH, however, computes values on structured grids, so the data writes to the HDF5 file tend to be large
contiguous blocks. This time, to see how this system performs under optimal conditions, we put the NDGM buffer
on the same machine as the code. This results in the HDF5 access being kernel shared memory access. A simulation
of a kinetic energy projectile impacting a moving armor plate was used for this test. A problem with a grid of 64 x
256 x 128 (2.097E6) cells was run on the SGI Origin2000 for 521 iterations (4E-06 seconds simulation time). This
time we requested a data update every 10 iterations. Each data update is about 120MB so the total for the entire
runtime is 6.36GB.

09/26/01

13

Figure 4. CTH Simulation

Table 3. Total Runtime on SGI Origin2000

Number of Nodes Total Time
No Updates

Total Time
With Updates

Effective
Throughput

8 6413 sec 6525 sec 56.8 MB/sec

16 4347 sec 4395 sec 133 MB/sec

32 2327 sec 2356 sec 219 MB/sec

Not surprisingly, the effective throughput of the structured grid code dumping data to shared memory is significantly
better than the unstructured grid code dumping data to distributed memory or across the network. Large, contiguous
data access results in less internal overhead and fewer messages or shared memory accesses. Since each processor
updates the HDF5 data independently, the 32 processor runs, with an effective throughput of over 200MB/sec
probably benefited by some of the HDF5 accesses overlapping computation of other processors. The simple lesson
is that data layout is extremely important to performance.

With both ParaDyn and CTH, most of the interface code deals with accessing the internal database APIs. To provide
a more straightforward example, we provide a complete code on our WEB site (www.arl.hpc.mil/ ice) that has pre-
processing, computation, and file I/O confined to a single FORTRAN source file. The code needed to interface this
code to XDMF is then added in the previously mentioned fashion. This interface is about 150 lines of C++ code.
Much of this interface is reusable for other applications; the main difference is the access of the HPC code’s internal
variables. This may result in a new convenience object to encapsulate the functionality thus reducing many
interfaces to significantly less code.

In all cases, once the data is written to the HDF5 buffer it is ready to be visualized. Utilizing a graphical user
interface, we provide access to common visualization techniques like isosurfaces and cutting planes through vtk
“networks”. The light data is used to initialize these networks before any heavy data is read from the HDF5 buffer.
This flexibility allows the user to use the same visualization tools across a wide variety of HPC codes. For the more
heavily used codes like ParaDyn and CTH, a Tcl/Tk interface is added to the environment for setting up code input
thus providing an entire common runtime environment.

09/26/01

14

Conclusion

The eXtensible Data model and Format is a new approach to distributed computing. By mimicking the process of
standard file I/O, XDMF adapts to the existing structure of many HPC codes. Consisting entirely of user level code,
XDMF requires no site-wide deployment of privileged code or modification of current accounting or security policy.
On this foundation, we have also provided the graphical user interface and visualization support necessary to
develop an entire distributed environment for HPC codes.

Acknowledgment
The authors would like to acknowledge Ms. Jennifer Hare for her help implementing the system, Dr. Photios
Papados for his help with ParaDyn, Mr. Stephen Schraml for his help with CTH, and the ARL MSRC for stable
access to a variety of HPC platforms.

References

1. Foster, I., Antonio, J., “The Globus project: a status report”, proceedings of the Seventh heterogeneous
Computing workshop, pp 4-18, march 1998

2. Grimshaw, A., Ferrari, A., Knabe, F., Humphrey, M., “Wide area computing: resource sharing on a large scale”,
Computer , volume 32, issue 5, pp 29-37, May 1999

3. Object Management Group, “The common object request Broker: Architecture and Specification”, num. 91.12.1,
December 1991

4. Purtilo, J.M., “The POLYLITH Software Bus”, ACM TOPLAS, Vol 16, Number 1, pp 151-174, Jan. 1994

5. Magee, J., Dulay, N., Kramer, J., “A Constructive Development Environment for Parallel and Distributed
programs”, Proceedings of the International Workshop on Configurable Distributed Systems, Pittsburgh, March
1994

6. Bellissard L., Boyer, F., Riveill, M., Vion-Dury, J., “System Services for Distributed Application Configuration”,
Proceedings of Fourth international conference on Configurable Distributed Systems. Pp 53-60, May 1998

7. Folk, M., McGrath, R., Yeager, N., “HDF: an update and future directions”, Proceedings of IEEE 1999
international Geoscience and Remote Sensing Symposium, Volume 1, pp 273-275, july 1999

8. Baden, S.B., Fink, S.J., “A programming methodology for dual-tier multicomputers “, IEEE Transactions on
software engineering, Volume 26, Issue 3, pp 212-226, March 2000

9. Chialin Chang, Kurc, T., Sussman, A., Saltz, J., “ Optimizing retrieval and processing of multi-dimensional
scientific datasets”, Proceedings of 14th international Parallel and Distributed Symposium, 2000. pp. 405-410, May
2000

10. Linn, J., RFC 1508, “Generic Security Service Application Program Interface”, September 1993

11. Clarke J., “Emulating Shared Memory to Simplify Distributed-Memory Programming”, IEEE Computational
Science & Engineering, Vol 4, No. 1, pp 55-62, January-March 1997

12. “Document Object Model (DOM) Level 1 Specification.”, World wide Web Consortium,
http://www/w3.org/TR/REC-DOM-Level-1

09/26/01

15

